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A formyl equivalent was generated in situ from Eschenmoser’s salt in aqueous THF and was reacted with
an allylindium species. Acylnitroso-derived hetero-Diels–Alder adducts and related allyl acetates were
shown to be substrates for Pd(0)/InI-mediated allylations of formaldehyde-related species to provide
homoallylic alcohols. Hydroxymethyl groups were installed with regio- and diastereocontrol to provide
relevant disubstituted carbocyclic scaffolds. Enantiopure anti-disubstituted cyclopentene products were
prepared from a chiral allyl acetate.

� 2010 Elsevier Ltd. All rights reserved.
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Formaldehyde is one of the most reactive carbonyl electrophiles
used in organic syntheses. Although gaseous formaldehyde may be
generated from paraformaldehyde, self-polymerization has limited
its general use.1 Additionally, commercially available 37% aqueous
formaldehyde is an inadequate source of monomeric formaldehyde
because formaldehyde hydrate exists in solution.2 In order to
achieve high yielding reactions with formaldehyde, stable formal-
dehyde–organoaluminum complexes have been generated3 and
water-tolerant Lewis acids have promoted direct hydroxymethyla-
tions in aqueous formaldehyde solutions.4 We envisioned an alter-
native method to generate formaldehyde or related species (in situ
hydrolysis of Eschenmoser’s salt) and then using the simple syn-
thon as an allylation acceptor to prepare hydroxymethylated car-
bocyclic platforms (±)-1a, (+)-1b, and (+)-1c (Fig. 1).

Carbocycles (±)-1a, (±)-1b, and (±)-1c are precursors to carbocy-
clic nucleosides5 and related carbasugars.6 To date, direct access to
these diverse substrates from a common precursor has not been
achieved. Compound (±)-1a and related derivatives7 have been
prepared from an initial Diels–Alder reaction between a sulfonyl
isocyanate and cyclopentadiene followed by hydrolysis to afford
2-azabicyclo[2.2.1]hept-5-en-3-one (Vince’s lactam); reductive
opening of the lactam provides substrate (±)-1a.8

Conversely, a multi-step synthetic sequence may be employed
to prepare carbocyclic scaffolds bearing 40-hydroxymethyl groups.
For example, the C40–C50 bond has been installed by Pd(0)-cata-
lyzed allylic alkylations with nitromethane,9 ethyl nitroacetate,10

and (phenylsulfonyl)-nitromethane.11 In each case, the 40-hydroxy-
methyl group was then ultimately revealed through an oxidation–
reduction sequence. Although scaffolds (±)-1a12 and (±)-1b13 have
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been reported, the diastereomers are prepared by two unrelated
synthetic methods. In order to develop a direct hydroxymethyla-
tion reaction and synthesize diverse carbocyclic platforms from a
common substrate, Pd(0)/InI-mediated allylations of formaldehyde
and formyl equivalents with hetero-Diels–Alder cycloadduct (±)-
2b and allyl acetate (�)-8 were investigated to ultimately prepare
(hydroxymethyl)cyclopentenyl scaffolds (±)-1a, (+)-1b, and (+)-1c
(Fig. 1).

Allylindium reagents are mild nucleophilic species that readily
react with aldehydes and ketones to afford homoallylic alcohols.14

Our group has previously developed Pd(0)/InI-mediated allylations
of diverse electrophiles with hetero-Diels–Alder cycloadducts (±)-
2a and (±)-2b.15

In an initial attempt to affect hydroxymethylation, phenylacetyl
cycloadduct (±)-2a was treated with Pd(0) and InI in the presence
of 37% aqueous formaldehyde (1.5 equiv) to afford an equal distri-
bution of syn-1,4, anti-1,4, and anti-1,2 allylation products (±)-3a,
(±)-3b, and (±)-3c, respectively, in an overall 30% isolated yield
(Scheme 1).15b

We shifted our focus to formyl equivalents and related electro-
philes as alternative options to install the requisite hydroxymethyl
group by using Pd(0)/InI allylation chemistry. Unfortunately,
several electrophiles (i.e., s-trioxane, trifluoroethyl formate, ben-
zylozymethyl chloride, methyl cyanoformate, CO2, and DMF ace-
tals) were unreactive toward Pd(0)/InI allylation conditions in the
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Figure 1. Carbocyclic target molecules.
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entry order of reagent addition
total 
yield

7a 7b 7c 7d

1 Stir 2b, Pd(0), InI for 90 min; add 5a 67 8 14 11 N/A

2 Stir 2b, Pd(0), InI for 90 min; add 5b 84 14 2 0 38%f

3 Stir 2b, Pd(0), InI for 0 min; add 5b,c 38 22 34 5 N/A

4 Stir 2b, 5, InI for 0 min; add Pd(0)d 42 18 34 6 57%g

5 Stir 2b, 5, InI for 0 min;e add Pd(0)d 66 15 11 8 N/A

6 Stir 2b, 5, InI for 10 min; add Pd(0)d 67 19 14 0 78%g
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Scheme 3. Pd(0)/InI-mediated allylations of formaldehyde (generated in situ from
Eschenmoser’s salt). Reagents and conditions: (a) a THF/H2O solution of Eschenmo-
ser’s salt 5 was prepared and added immediately; (b) a THF/H2O solution of
Eschenmoser’s salt 5 was stirred for 10 min prior to addition; (c) a THF/H2O solution
of Eschenmoser’s salt 5 was added dropwise over 30 min; (d) a THF solution of
Pd(0) was stirred for 10 min prior to addition; (e) the reaction was cooled to 0 �C; (f)
isolated yield for (±)-7a; (g) isolated yields for combined products (±)-7a, (±)-7b,
and (±)-7c.
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Scheme 1. Pd(0)/InI-mediated allylation of aqueous formaldehyde.
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presence of cycloadducts (±)-2a and (±)-2b even with increased
temperatures.16 When more reactive electrophiles (i.e., Vilsmeier’s
reagent, Viehe’s salt, and 1,3-benzodithiolylium tetrafluoroborate)
were used for the Pd(0)/InI allylation chemistry, cycloadducts (±)-
2a and (±)-2b were consumed and complex product mixtures were
obtained.

Although we had extensively explored formyl equivalents and
related electrophiles as potential substrates for Pd(0)/InI-medi-
ated allylation chemistry with cycloadducts (±)-2a and (±)-2b, a
related indium-allylation reaction led us to discover an appropri-
ate source of a formyl species. During the course of identifying
iminium species for Pd(0)/InI-mediated allylation chemistry, we
recognized that treatment of Boc cycloadduct (±)-2b with Pd(0)
and InI in the presence of N-benzylidenemethylamine did not
produce the anticipated homoallylic amine (±)-4a (Scheme 2).17

We isolated homoallylic alcohol (±)-4b in 42% yield. These results
are consistent with the in situ hydrolysis of N-benzylidenemeth-
ylamine to provide benzaldehyde and subsequent allylation to af-
ford (±)-4b.

The hydrolysis conditions were reproduced by treating Boc cyc-
loadduct (±)-2b with Pd(0) and InI in the presence of Eschenmo-
ser’s salt 5 in THF/H2O (Scheme 3). After 90 min at rt, 1H NMR
integration of the crude reaction mixture revealed a mixture of
syn-1,4, anti-1,4, anti-1,2, and anti-1,4 allylation products (±)-7a,
(±)-7b, (±)-7c, and (±)-7d, respectively (Scheme 3, entry 1).18 The
preference for syn-1,4 product (±)-7a was rationalized with transi-
tion state 6. If formaldehyde was the reactive species, indium may
coordinate to the N-hydroxy carbamate oxygen and the carbonyl
oxygen of formaldehyde as shown in complex 6. Encouraged by
this result, we investigated conditions to improve the ratio of
syn-1,4 product (±)-7a. Accordingly, production of (±)-7d was sup-
pressed by stirring Eschenmoser’s salt in THF/H2O for 10 min prior
to allylation (entries 2 and 6).19

An increase of syn-1,4 product (±)-7a was observed when cyc-
loadduct (±)-2b was stirred with Pd(0) and InI for 90 min followed
by treatment with a THF/H2O solution of Eschenmoser’s salt
(Scheme 3, entry 2). 1H NMR integrations confirmed syn-1,4 prod-
uct (±)-7a as the major component of the reaction mixture. After
column chromatography, syn-1,4 product (±)-7a was isolated in
38% yield (>97% de). Despite the low isolated yield, these reaction
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Scheme 2. Pd(0)/InI-mediated allylation of benzaldehyde (generated in situ from
N-benzylidenemethylamine).
conditions provided highly enriched amounts of the syn-1,4 prod-
uct (±)-7a.

Alternatively, syn-1,4 product (±)-7a was produced by stirring
cycloadduct (±)-2b with InI and Eschenmoser’s salt in THF/H2O
for 10 min followed by addition of a THF solution of Pd(0) (Scheme
3, entry 6). Although these reaction conditions afforded the highest
isolated yield of all allylation products, syn-1,4 product (±)-7a
could not be exclusively isolated by this method because separa-
tion by column chromatography was complicated by increased
amounts of (±)-7b and (±)-7c. When cycloadduct (±)-2b was stirred
with InI, formaldehyde, and dimethylamine in THF/H2O for 10 min
followed by the addition of a THF solution of Pd(0), starting mate-
rial was consumed and compounds (±)-7a, (±)-7b, (±)-7c, or (±)-7d
were not observed.

N-Hydroxy carbamates (±)-7a and (±)-7c were reduced to
carbamates (±)-1a and (±)-1c, respectively, with Cp2TiCl20

(Scheme 4). Compound (±)-1a represents a key carbocyclic scaffold
for the syntheses of carbocyclic nucleoside target molecules and
related analogs.

A complementary route was developed to provide anti-
(hydroxymethyl)cyclopentenyl derivatives as the exclusive prod-
ucts. Allyl acetate (�)-8 was selected as an appropriate substrate
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Scheme 4. Cp2TiCl-mediated N–O bond reductions.
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Scheme 5. Pd(0)/InI-mediated allylations of formaldehyde (generated in situ from
Eschenmoser’s salt).
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because it is easily prepared from Boc cycloadduct (±)-2b in three
steps and provides enantioenriched allylation products.21

Additionally, substrate (�)-8 lacks a coordinating hydroxamate
oxygen and, in this case, allylation was anticipated to proceed anti
to the carbamate substituent. Indeed, Pd(0)/InI-mediated allylation
of (�)-8 provided anti-1,4 and anti-1,2 scaffolds (+)-1b and (+)-1c,
respectively, in a 2:1 ratio and in overall 71% isolated yield
(Scheme 5). If formaldehyde was the reactive species, the prefer-
ence for anti-1,4 product (+)-1b may be consistent with transition
state 9 in which indium coordinates to the carbamate oxygen and
formaldehyde. In transition state 10, indium may be unable to
coordinate to the carbamate as an unfavorable bridged species
would result. In-mediated allylation provides anti-1,2 carbocycle
(+)-1c as the minor product. This method was a dramatic improve-
ment to previously reported conditions. Pd(0)/InI-mediated allyla-
tion of 37% aqueous formaldehyde with allyl acetate (±)-8 provided
anti-1,4 product (±)-1b in 10% isolated yield.15b

Diverse cyclopentene scaffolds (±)-1a, (+)-1b, and (+)-1c have
been prepared from cycloadduct (±)-2b and/or allyl acetate (�)-8.
Two key synthetic transformations, Pd(0)/InI allylations of a formyl
species generated in situ from Eschenmoser’s salt and Ti(III)-med-
iated N–O bond reductions, were used to prepare the isomeric
products. Syntheses of targeted carbocyclic nucleosides from sub-
strates (±)-1a and (+)-1b are reported in the subsequent Letter.22
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